
www.risc-software.at

The technical magazine of RISC Software GmbH
on current research and development topics

I N S I G H T S

Agile Software Development

Data Science and Prescriptive Analytics

Software Reengineering

1

2

Agile vs. Classic Software Development
Page 4

Estimating in Agile Projects with Story Points
Page 14

Welcome Change - The new Scrum Guide
page 22

Trust in Artificial Intelligence
Page 6

Can Data Science lead industrial companies
out of the crisis?
Page 16

“OK Google: What is Natural Language Processing?”
Page 24

Making better decisions thanks to Prescriptive
Analytics
Page 30

Data Understanders: Leveraging enterprise data
through intelligent Graph Databases
Page 34

Software reengineering: When will the
legacy system be a problem?
Page 10

Software Modernization
Page 18

Working with Fortran in 2020: Areas of application
Page 12

C++20 Concepts
Page 28

CONTENT

Agile Software Development

Data Science and Prescriptive Analytics

Software Reengineering

33

Dear Reader,

The magazine you are currently holding is the first issue of our collected technical papers.
Our experts offer you both general introductions to topics and profound information
on the areas of optimization, simulation, data science and prescriptive analytics, as
well as software reengineering and agile software development. Most of what you are
reading here is know-how which was built up over many years and had been developed
in research projects, paired with the latest scientific methods successfully implemented
in customer projects. These successes are not based on the personal commitment of
our employees. What distinguishes us is our ability to solve problems together with our
customers in a way that, beyond digitization, we gain a decisive competitive advantage
and develop a good partnership on the long run, too.

Digital transformation affects all departments and organizational areas and requires a
high degree of change, often a cultural change, too. We perceive ourselves as enablers
and therefore we bring comprehensive multidisciplinary competencies to the table. We
provide the experts with whose experience and domain knowledge this process is driven
forward. This is a huge advantage for our customers, since the technological challenges
are becoming even more various due to the increasing dynamics and complexity.

RISC Software GmbH is not only an experienced partner for research projects and long-
term collaborations, it is also a knowledge mediator. Within the framework of our AI
Academy, we offer workshops on topics such as agile project management, artificial
intelligence and much more, also according to specific customer requirements. We
support customers in their development of specific know-how related to digitalization
and new technologies.

No matter where you are - whether you want to digitize complex processes, bring old
inventory software up to date, use your manufacturing data for forecasting or anywhere
else - our team of experts supports you in the implementation of your R&D projects with
their different expertise!

Enjoy reading,

Wolfgang Freiseisen
CEO Software GmbH

4

The right process model for your project

Classic approaches such as waterfall, V-model or spiral model or agile approaches such as Scrum or Kanban?
At the beginning of a project, the question arises as to which of the existing process models is best suited
for the current project. RISC Software GmbH has many years of experience with various process models and
advises its customers at the beginning of a project which process model is recommended.

Changes
Classical process models follow a linear ap-
proach, where a defined final state is worked
towards from the beginning. Here, the proj-
ect passes various phases in sequential or-
der. The phases are usually completed by
milestones. Due to rigid transitions and se-
quence of phases, the introduction of new
requirements or a change of requirements
into a project are avoided, if possible. This is
usually not compatible with the with budget
and time goals.

Agile approaches rely on an iterative-incre-
mental model instead of this sequential pro-
gression. Iterative means that product devel-
opment happens in cycles, while incremental
means that each cycle a potentially usable
product increment is produced. As a result,
necessary deviations from the plan can be
identified at an early stage.

Feedback
Recognizing the need for specific changes is
a challenge for any project team. In classic
process models, this happens in best case at
the milestones, i.e., between two phases - in
worst case at the end of the project. In agile
approaches, each iteration includes timely
feedback from customers, which prevents
the final product from not even meeting the
market requirements.

Agile Software Development

Agile vs. Classic
Software Development
– DI (FH) Andreas Lettner
Head of Domain-specific Applications Unit and Head of Coaches

Requirements

Design

Development

Test

Product Feedback

MaintenanceDeploymentAnforderungTestImplementationSystem DesignRequirements

Waterfall model approach
vs.

Procedure for iterative incremental model

Figure 1: Waterfall model versus iterative incremental model

Figure 2: From request to feedback

5

 Conclusion

Both approaches - the classic and the agile - have their
respective advantages. Ultimately, the assessment of
which process model is the most suitable is based on
the experience of both partners - the client and the im-
plementation partners. Nevertheless, the following ba-
sic rules can be used to make a decision:

Projects that can be realized with small teams in a short
period of time and are within a clearly defined context
may be suitable for classical process models. Even with
a classic process models, RISC Software GmbH works
according to agile values and usually supplements the
project processes with agile practices. Above all, active
and regular communication with customers is a policy
that is never neglected.

Agile practices are recommended for all other projects.
Steering product development and reducing complex-
ity are elementary principles of agile values, and even
long-term projects with multiple teams can be coordi-
nated through scaling techniques. A team of specialists
at RISC Software GmbH advises its customers individ-
ually on the possible process models as early as the
project initiation phase and also continuously monitors
the results during project implementation in order to
be able to make any necessary adjustments to the pro-
cess model with the customers in good time.

Agile Software Development

plannable

vs.

emergent

Figure 3: Planned versus emergent product development

5

Complexity
Projects fail because of the misjudgement of
their complexity. The definition of complexity
according to the Cynefin framework results
from the fact that the relationship between
cause and effect cannot be predicted in ad-
vance. Complex systems require ermergent
practices to achieve a product goal. This con-
trasts with complicated systems where - with
the appropriate knowledge base - the rela-
tionship between cause and effect is predict-
able. Thus, complicated systems or products
can certainly be planned in advance. Agile
approaches are based in their principles on
emergent product development and promote
the reduction of complexity through their it-
erative-incremental practices.

6

Trust in Artificial
Intelligence
– Christina Hess, MSc
Data Scientist, Logistics Informatics Unit

How we create and use trustworthy AI systems

Artificial intelligence (AI) already supports us in our everyday lives, consciously or unconsciously, in many ar-
eas. We act with automated assistants such as voice assistants or the parking aid in our cars, use facial recog-
nition to unlock our smartphones, and let music and movies be suggested to us. AI is already very present in
our everyday lives - perhaps even more than we realize. The number of AI applications will continue to grow in
the future. As we create and use AI systems in the future, we need to be aware not only of the opportunities,
but also the risks and challenges of using them. Guidelines can help us create AI systems that are not only
efficient, but also ethical, safe, and trustworthy.

AI on the rise
The advantages and areas of application of AI are multifaceted. It
is easier to understand with a few simple examples: Recommenda-
tion systems try to learn our tastes from our previous choices and
then suggest content we like. Streaming providers like Spotify or
Netflix have been relying on this kind of AI for years. Natural Lan-
guage Processing (NLP) methods help us understand or generate
texts. This makes it possible, for example, to automatically trans-
late texts in such high quality that these texts are often indistin-
guishable from texts written by humans.

In industry, machines can be maintained at an early stage through
the application of AI, thereby reducing or completely preventing
failures. Such applications are referred to as predictive mainte-
nance. In general, predictive analytics can be used to predict ma-
chine failures, the quality of manufactured products, or even or-
ders or order quantities. Prescriptive analytics - a current field of
research as an extension of predictive analytics - attempts to make
optimal decisions on the basis of predictions, causal relationships
and domain knowledge.

In medicine, AI systems can support medical professionals in both
diagnosis and treatment. For example, tumors or diseases can be
detected automatically on the basis of image data, diagnoses can
be suggested on the basis of patient data and symptoms, and dis-
ease progression can be analyzed and predicted.

AI systems in cars enable automatic traffic sign recognition, help to
keep in lane and even enable autonomous driving.

Current challenges and problems
However, the use of AI systems also brings some disadvantages
and risks with it. Systems that are not fully developed or have not
been tested enough can be prone to errors. If the AI used by the
streaming provider for user profiling is not good, you as a user will
get suggested content that does not interest you or that you do
not want to watch. If qualities or outages are predicted incorrectly,
it can lead to outages, lost revenue and increased costs. When AI
is applied in more sensitive areas, there can be even more tragic
negative consequences. Consider, for example, an autonomous
driving vehicle whose AI is poor at distinguishing people from ob-
jects. Then, in the worst case scenario, the vehicle will not avoid
the person and hit the trash can, but the other way around. In ad-
dition to the possible susceptibility of AI systems to errors, other
aspects also need to be considered. Currently, ethical aspects, data
protection and the transparency of AI systems are the main topics
of discussion.

In addition to the possible susceptibility of AI systems to errors,
other aspects also need to be considered. Currently, ethical as-
pects, data protection and the transparency of AI systems are the
main topics of discussion. Errors and inaccuracies in the data used,
the implementation or the interpretation of the results can lead to
people or groups being discriminated against, to them being re-
stricted in their ability to make decisions or to the system causing
harm in some other way. A well-known example is the following:
Bias (distortions) in the data causes models trained on the data
to also reflect that bias. A really good model eventually learns to
decide as humans would. If the data on which the model is based
are racist, i.e., if these data represent racist decisions made by hu-
mans, the model will also make racist decisions. A really good mod-

Data Science and Prescriptive Analytics

7

el like the one we would want as a society - one that is secure and
trustworthy - would not be able to meet the challenges presented
in the data or provide us with a way to prevent it.

In addition to data quality, the interpretability of AI models is of-
ten a major challenge. In black box models, the decision of the
AI system cannot be understood or can only be understood very
imprecisely. However, this would be extremely important in terms
of transparency and trustworthiness of the system. Imagine an
AI deciding whether to get a loan or not. In case of rejection, you
now want to know why you were assessed the way you were. You
even have the right to know why an AI made a decision about you.
Here, a major current problem becomes apparent: If you want to be
able to understand the decisions of an AI, you cannot use models
whose results cannot be explained completely - even if these mod-
els are better in their assessment than others.

Regardless of whether an AI makes good decisions about you and
whether they can be interpreted: Maybe as a human you just don‘t
want to be judged by an AI. A topic often discussed within this con-
text is the so-called social profiling. To use the example of lending
again as an illustration: If an AI automatically divides applicants
into cohorts, you may be denied a loan based on your age or origin,
but given one to comparable candidates. Such ethical challenges
are being addressed by various institutions, research organizations
and NGOs. Amnesty International, for example, provides examples
of how AI systems can pose a threat to our fundamental rights.

Guidelines for creating trustworthy
AI systems
The previously mentioned questions are being addressed by dif-
ferent organizations/institutions and from different directions. In
order to be able to develop AI systems in such a way that they are
robust and transparent and do not pose a threat to us, but rath-
er support us and help us wherever and whenever we as humans
reach our limits, various guidelines have already been developed.
The goal here is that we as a society can trust AI and its decisions.
A well-known example is the Ethical Guidelines for Trustworthy AI
published by the EU in April 2019. According to these, AI systems
should be developed and deployed in compliance with various
ethical principles. In addition to fairness and harm prevention (AI
systems should not cause harm or have a negative impact in any
other way), the ethical principles of respect for human autonomy
and explainability are described in the context of AI systems. Ex-
plainability in this context includes not only the comprehensibili-
ty of the generated results (keyword: black box models), but also
transparency with respect to all processes, the capabilities and the
purpose of the AI system. To preserve human autonomy, human
supervision and control over the AI system and all processes have
to be ensured. Accordingly, AI systems should not subordinate,
enforce, condition or do anything similar against humans but AI
should support and complement human capabilities.

The Guidelines set out various requirements for AI systems to pre-
serve ethical principles and establish trust, and suggest various

Data Science and Prescriptive Analytics

8

technical and non-technical methods for implementation. Below you
can see a list of all the requirements for trustworthy AI.

• Priority of human action and human supervision: AI systems
should support human autonomy and decision-making and be
able to be supervised by humans. The less supervision a human
can have over an AI system, the more extensively it must be test-
ed before and the more strict the guidance and control must be.

• Technical robustness and security: For a system to be considered
robust, it must work properly and the results must be accurate
and reproducible. Security includes risk prevention, the creation
of fallback plans and the ensurance of protection against attacks
and misappropriation.

• Privacy and data quality management: User data must be pro-
tected and not used to discriminate against other users. Data
quality management is necessary to ensure the quality of data,
documentation and to control over access.

• Transparency: Only when a system and its results are traceable,
i.e., verifiable and explainable and the capabilities and limitations
of the system are clearly communicated and defined, then the
system can be called fully transparent.

• Diversity, non-discrimination and fairness: All stakeholders must
be involved and treated equally during the lifetime of the AI sys-
tem. It is important that bias is avoided and that the system is
designed to be as barrier-free and user-oriented as possible.

• Social and environmental well-being: An AI should be used for the
benefit of all people and during its lifetime, the society, other sen-
tient beings and the environment should be considered as stake-
holders. This includes sustainability, environmental friendliness,
social awareness, and the preservation of democracy.

• Accountability: Provisions must be made to ensure responsibili-
ty and accountability for AI systems and their results. Vulnerable
persons must be given special consideration and adequate legal
protection must be provided in case that adverse effects occur.

 Conclusion
In the future, it will be even more important for the
development of good and safe AI systems that there
are no negative effects and that all decisions are also
comprehensible for us humans. Otherwise, people
will place little trust in AI. And if there is a lack of trust,
there will also be a lack of acceptance of such intelli-
gent systems in our society. It is particularly important
that both developers and users know and understand
the opportunities of AI systems, but also their risks
and limitations. Through this and through adherence
to guidelines, mindfulness in development and the
use of human-centered development and design prin-
ciples, we can create AI systems that are capable for
the future.

Data Science and Prescriptive Analytics

99

10

Software-Reengineering: When
will the legacy system become
a problem?
– DI (FH) Alexander Leutgeb
Head of Industrial Software Applications Unit

If ain’t broke, don’t fix it

Business-critical software is not immune to a certain aging process. However, an equivalent replacement is
often not that easily available. But when is the time to replace the legacy system with the help of software
reengineering? A common saying is: “Never change a running system.” This sentence, which is presumably a
modified form of the statement “Never change a winning team” by the British soccer player and coach Sir Alf
Ramsey, is, however, hardly known in the English-speaking world. There, the statement “If it ain‘t broke, don‘t
fix it.” is used instead. The statements are similar, but the second formulation does not seem quite as strict
and dogmatic. In other words, one should only try to fix something if it is actually defective or damaged.

From a functional point of view, this would mean that a system is no longer capable of performing the task for
which it was designed. For software, we can go a step further here. A software system is “in need of repair
” when it reaches a state that makes maintenance difficult or impossible. We have collected six signs for you
that indicate that action is needed for your software system:

Missing or outdated
documentation
If the documentation of a system is outdat-
ed or does not match the actual system in
many parts, this is a clear sign of a legacy
system on which many changes have al-
ready been made. Even worse is the lack of
comprehensive documentation. Such a cir-
cumstance complicates the maintenance
and further development of a system and
makes it almost impossible to train new
employees quickly.

Original developers have left the
company
Usually, a lot of knowledge about a complex
system is stored in the heads of a few em-
ployees. This leads to a situation where the
continuity of the software is directly depen-
dent on the original developers, especially
if the documentation is not adequate. The
continuous departure of these employees
inevitably leads to a situation that makes
further development of the system almost
or fully impossible.

The knowledge base for the
system is missing
A significant alarm signal is when there
is hardly any understanding of the basic
functioning of the software among the em-
ployees. In the worst case, no one in the
company knows the original contexts and
concepts. This makes it extremely difficult
to find sustainable solutions if there is a
problem. The solution often is quick “hack-
ing” to solve the problem, but these accel-
erate the malicious circle even more.

Even the implementation of small
changes is very complex
A “law” formulated by Lehman and Belady
on the evolution of software [1] states that
systems become increasingly complex un-
til active work is done to reduce the com-
plexity. If even the implementation of small
changes or enhancements requires a great
deal of effort, this is a clear sign that the
system has already become too complex. If
even small changes require a large amount
of time, more difficult changes become al-
most impossible to implement.

Constant need to fix bugs
Large software projects will not ever be
free of bugs, so, making regular “bug fixes”
are necessary. However, if repeatedly fix-
ing a bug leads to the appearance of a new
bug, this is a sign that the architecture of
the system may no longer meet current
requirements. This represents the risk that
small changes in the program will have un-
foreseen negative effects.

Code smells
Code smells are parts of the source code,
which are not faulty, but badly structured
and implemented. For example, the dupli-
cation of source code, i.e., the use of the
same lines of code in different parts of the
program, has a very bad influence on the
subsequent maintainability of the system.

Software Reengineering

[1] M. M. Lehman, “Programs, life cycles, and laws of software evolution,” in Proceedings of the IEEE, vol. 68, no. 9, pp. 1060-1076, Sept. 1980 see

https://ieeexplore.ieee.org/document/1456074

11

 The solution: Soft-
ware Reengineering
If the “symptoms” are recognized in time, the decay
of the software can be counteracted by using suitable
methods in order to keep the quality of the system at a
high level and to avoid possible failures. By Reengineer-
ing an existing system is restructured and above all also
prepared for future development and extension.

While maintenance involves adapting software that is
in a productive environment to changed environmental
conditions and correcting detected errors, reengineer-
ing involves redesigning and implementing systems or
parts of them from scratch.

RISC Software GmbH will gladly support you in the ini-
tial analysis as well as in the implementation of a reengi-
neering of your software system.

11

12

Working with Fortran in 2020:
Areas of application
– DI Dr. Christoph Hofer
Software Engineer, Industrial Software Applications Unit

From old to new
Fortran is considered as the first ever realized higher programming
language and was developed between 1954 and 1957 by IBM (FOR-
TRAN I). The extent of the language was still very limited, for ex-
ample, there were only integers and reals (floating point numbers)
as data types and no functions yet. In the following years new im-
proved and more extensive Fortran versions were developed (FOR-
TRAN II, FORTRAN III, FOR-TRAN 66). The next big update Fortran
got was in the year 1977 (FORTRAN 77). Due to new features in the
language, this version became very popular and thus quickly be-

came “the” Fortran. Even today, when talking about Fortran code,
mainly FORTRAN 77 code is meant, which also explains those
numerous bias against the language. Since then, there have been
several more updates to the language, in order to keep it up to date
with modern programming concepts and standards.

Major milestones in the development were the updates to Fortran
90 and Fortran 2003, which, in addition to the name change (FOR-
TRAN → Fortran), added common concepts such as free source
file formats, modules, operator overloading, derived data types,
pointers and object-oriented programming to the programming
language, among others. In addition, Fortran 95 and Fortran 2008
were each minor updates to the language. The latest version of the
Fortran standard is Fortran 2018, although no compiler provider
supports all of the features yet.

Compiler: the agony of choice
In addition to the extent of the programming language itself, a sim-
ple and pleasant workflow during development is also important
for the programmers, i.e., in which development environment can
one test and debug the written code well with which compiler. The
limited number of available development environments strength-
ens the impression that Fortran does not belong to the most
common languages nowadays. To program modern Fortran (For-
tran 2003/2008) one has several compilers to choose from, open
source and as well as commercial ones.

• Intel Fortran (ifort, commercial)
• NAG Fortran (commercial)
• GNU Fortran (gfortran,Open Source)

• Flang (formerly “f18,” in development, Open Source)
Regarding to development environments, there are IDEs devel-
oped specifically for Fortran, such as the NAG Fortran Builder, or
integrations for existing IDEs, such as the Intel Integration for Vi-
sual Studio, or extensions for editors, such as Visual Studio Code.
In addition to the included debuggers (gdb, idb), external commer-
cial debuggers, such as Total View for Fortran, are also available.
(https://totalview.io/)

Why is Fortran still used today?
Legacy code
Many Fortran systems which are still in use today were developed
in the 1980s. At that time, Fortran was the language for scientific
computing and numerical simulations. Such programs contain a
lot of knowledge and experience, often from several generations
of engineers and scientists. Transferring them to other “modern”
programming languages is often far too time-consuming or expen-
sive, and the added value for companies would hardly be given. Re-
engineering the program code to a modern Fortran standard and
actively developing it is often the better alternative.

Fortran is designed for technical application
As already mentioned at the beginning of the article, numerical
simulations are the typical use-case for Fortran as a programming
language. These areas are characterized by the fact that, on the one
hand, efficient program execution is important but, on the other
hand, the calculations are also described by mathematical formu-
las. Fortran gives programmers the possibility to represent these
formulas in a readable and compact way in the program code. Fur-
thermore, the language is designed for efficient calculations, so
that high-performance code is the rule rather than the exception.

Fortran is a simple language

Software Reengineering

Fortran - the proven programming language for technical applications

The name Fortran stands for “FORmula TRANslator” and is one of the oldest programming languages. For many
software developers it is the archetype for an old, ponderous, limited and difficult to understand programming
language with which it is best not to have anything to do. For the old versions of Fortran, this bias may indeed
be true. However, Fortran has changed a lot in its long history, so in its “modern” variants (like Fortran 2003)
the language has a much worse reputation than it deserves. The typical use case for Fortran as a programming
language is computationally intensive numerical simulations, such as weather forecasts, flow simulations,
stability calculations and many more.

13

Compared to C++ or scripting languages like Python, Fortran has
a rather limited feature set, which is why for many of today‘s busi-
ness applications the development would be very tedious, but
for technical/scientific applications it is very suitable. The smaller
feature set allows even less experienced programmers to devel-
op good software. Especially because of the many possibilities of
C++20 but also like with Python, less experienced programmers
are often overwhelmed with the possibilities. Wrongly used com-
plex languages often create more confusion than they contribute
to the solution of the problem. In this correlation, Fortran was de-
signed for scientists and engineers, not for computer scientists
and software developers.

Integration Fortran/C/Python
2003, a new possibility for easier interaction between Fortran and
C code was created with a module called iso_c_binding. This mod-
ule includes:
• types of primitive data types (integers, reals) corresponding to

the corresponding C data types (int, double...)
• functions for working with C pointers, such as converting C

pointers to Fortran pointers or reading the storage address of
a Fortran variable

• constants for non-displayable C characters, such as the newline

character (\n) or the horizontal tab (\t)
Not all data types from Fortran can be transferred into the C code
by means of the iso_c_binding and vice-versa. For example, in For-
tran there is no equivalent of a C union or in C there is no direct
equivalent of the Fortran ALLOCATABLE attribute for arrays, which
allows a dynamic allocation of memory that is automatically freed
again if the array goes out-of-scope. Furthermore, C/C++ has no
support for array slices, i.e., a structured subset of an array, so cop-
ies must be created when passing them.

In some projects of RISC Software GmbH the default was to write
Python interfaces for Fortran code. Fhe SWIG program (http://
swig.org/), which generates code for Python C interfaces, has
proven itself for this purpose. To generate a Python/Fortran inter-
face, the Fortran/C interface is written first and then the Python/C
interface is generated using SWIG. SWIG is very flexible in its ap-
plication and even allows numpy-arrays as arguments of the Py-
thon functions, which leads to efficient Python, on the one hand,
and readable Python, on the other hand. By integrating it into the
CMake build-system, this approach works platform independent
and provides a simple and efficient workflow in development.

Software Reengineering

14

Estimating in Agile Projects with
Story Points
– DI (FH) Andreas Lettner
Head of Domain-specific Applications Unit and Head of Coaches

Effort estimation of agile software projects

In order to estimate the extent of a project for offer as well as for implementation in advance, person hours or
person days are traditionally used. This involves some problems and dangers. Complex tasks often cannot be
estimated before the start of the project, too generous buffers or short time windows often make offers inac-
curate.

One of the biggest challenges in the development of individual software lies in a task that sounds rather simple:
the estimation of effort. The term implies an “estimate,” which basically indicates the empirical nature of this
task. Nevertheless, especially in the initiation phase, the most “accurate estimates” possible are in demand, and
in some cases these are even used as the basis for contracts.

Everything is relative
Estimation with Story Points is different: it
is not based on absolute values but on rel-
ative ones. Story Points can be applied to
different values that define the complexity
of a task. However, the most common is a
general assessment of the extent or effort.
A direct conversion into a concrete time
statement is not possible for now.

Story Points are used by members of the
development team to estimate tasks in
relation to each other. As an example, a
team defines a known task which, with the
associated estimate (e.g., 3 Story Points),
provides a starting value for further esti-
mates. Each future task is now estimated
in relation to this metric by the entire de-
velopment team. People usually find it
very easy to estimate an effort in terms of

“greater than” or “less than”, which is why
there is a first advantage of Story Points at
this point. Furthermore, Story Points are
used in an adapted Fibonacci-sequence
which includes the values 0, 1, 2, 3, 5, 8,

13, 20, 40, 100, and ∞. This scale allows an
estimation in increasing ranges, which here
makes especially not yet exactly specified
or too comprehensive tasks recognizable. It
is not necessary to use this scale in its en-
tirety. Such an estimation is carried out by
the development team, e.g., with cards in
“Planning Poker”.

Include different velocities
In order to be able to use Story Points for
agile software development, another val-
ue is required: the team velocity. The team
velocity indicates how many story points
the team can accomplish on average per
iteration. This value is variable and usual-
ly changes over the duration of a project,
which is why continuous observations and
adjustments are necessary. Above all, the
stability of the team composition is an es-
sential condition. The reason is that the es-
timation is not only relative with respect to
the tasks, but also independent of the per-
formance potential of the individual team
members. A task with 3 Story Points can

mean an actual time expenditure of 5 hours
for one team member, and only three hours
for another team member. Since Story
Points are assigned as a team and the tasks
are also processed as a team with known
team speed, there is good predictability
about the possible implementation extent
of an iteration.

If three values are used for the team ve-
locity, so the average, the fastest and the
slowest of the last six iterations, a corridor
can be specified for the predictability of the
implementation duration, which offers fur-
ther advantages with regard to planning.
This makes it easy to identify tasks in a
backlog which are not possible in terms of
time according to the current planning or
which can be guaranteed.

Agile Software Development

15

 Win-win-situation:
Estimating with story points offers customers the best
possible transparency for planning, controlling and adjust-
ing a project roadmap. Thus, reliable state-ments about
feasibility, completion, etc. can be made despite the agile
approach. The development team is also guaranteed the
ability to plan while at the same time remaining agile. RISC
Software GmbH has been successfully using story points
in agile projects.

15

16

Can Data Science lead industrial
companies out of crisis?
– Mag.a Stefanie Kritzinger, PhD
Head of Logistics Informatics Unit

Processes: Increase quality and
minimize costs
In order to increase quality and minimize
costs, an important success factor is to
extract valuable information from the col-
lected production data. Nevertheless, this
is not a trivial task. Intensive data engineer-
ing makes process and production data due
to quality-relevant process steps usable.
Necessary parameters are identified in or-
der to perform automated data analyses
using data and visual analytics or modern
artificial intelligence methods. This makes
it possible to detect anomalies, evaluate
them correctly, and predict their effects on
the final product quality. The improvement

of quality management is complemented
by the traceability of production parame-
ters and quality characteristics of the entire
process. Thus, a better understanding of
the production process is possible by rec-
ognizing cause-effect relationships based
on anomalies and patterns. This also allows
maintenance intervals and cycles to be op-
timized and, subsequently, production pro-
cesses to be improved.

This makes it possible, for example, to min-
imize scrap by ensuring that the machines
produce at the correct operating tempera-
ture, minimize unplanned downtimes, or
optimize maintenance intervals.

Detect bottlenecks early: Pre-
scriptive Analytics
Especially in times of crisis, short-term
fluctuations in demand are daily business.
In most cases, production systems are
also highly complex due to their individ-
ual structure and organization. Scarce re-
sources, special requests from customers,
the resulting product variety, and deadline
pressure overload existing capacities and
lead to cost-intensive bottlenecks, for ex-
ample, due to additional staff or delayed
deliveries. Good preparation for the early
detection of bottlenecks is based on intel-
ligent forecast-based planning.

How it is possible to minimize costs, respond flexibly to fluctuations in demand
and avoid production downtime due to disruption?

Particularly in economically difficult times digitization and the automation that goes with it play a crucial role.
Manufacturing companies are facing a previously never-existing challenge: processes should already be digi-
tized and partially automated controllable in order to monitor and manage production remotely. Sales markets
and workforce planning are subject to external, uncontrollable influences and production in small batches is
more attractive than ever before. Depending on the industry and the level of digitalization, some companies
can handle this easily, while others cannot.
The enormous importance of digital and virtual networking is currently being demonstrated to us in the fight
against the pandemic. Thanks to the digitization efforts of recent years, process and production data have
increasingly been seen as an essential part of value creation. Those who have already done their homework
have for some time been collecting extensive and automated data on their own company processes. On the
one hand, in order to use it to analyze and process real-time information for reacting to short-term changes in
production. On the other hand, in order to be able to derive future events from the collected data pools and
forecast them as accurately as possible.

Data Science and Prescriptive Analytics

17

Production figures can be predicted on the
basis of historical production figures and
other influencing parameters as well as
with the help of modern methods from the
field of statistics and artificial intelligence.
Based on these forecasts, which are very
likely to be accurate, adequate measures
can be derived and the expected develop-
ment can be influenced in a positive kind
of way - this is subsumed under the term
prescriptive analytics. Predictive analytics
functions create greater transparency in
upcoming production. Targeted calcula-
tions and visualizations make it clear where
bottlenecks may arise and where delays will
occur based on planning. This provides real

insights that enable intervention before the
problem even reaches customers.

Avoid downtime: Fault
management
Lack of material, lack of personnel and
changing requirements as a result of a cri-
sis are mostly known factors for production
stoppages. Disruptions often result in lost
sales, large financial losses, and negatively
impact the bottom line. Little attention is
paid to managing a disruption from its dis-
covery to its full recovery. Especially in the
case of unforeseen events, efficient disrup-
tion management is able to absorb disrup-
tions in a responsive manner. Rescheduling

of the production process is necessary in
order to maintain delivery reliability as far
as possible with limited resources due to
supply bottlenecks or short-time work,
while at the same time complying with the
recommended measures.

In the current, very turbulent and dynam-
ic environment, it is more necessary than
ever to increase the degree of digitization
in order to be able to adhere to the poten-
tial targets of increasing quality, minimizing
costs, identifying bottlenecks and efficient
fault management. In that case, the two
important key levers are process transpar-
ency and responsiveness.

 Know-how
The data engineers and data scientists at RISC Soft-
ware GmbH possess extensive expertise and many
years of experience in a wide range of areas of data
management and data analytics. By using modern
methods from the areas of data analytics and visual
analytics as well as machine learning for smart data
analysis and forecasting, the challenge of Big Data can
be perceived as an important opportunity for process
and revenue optimization.

17

Data Science and Prescriptive Analytics

18

Software
Modernization
– Michael Hava MSc, DI (FH) Josef Jank MSc,
and DI (FH) Alexander Leutgeb
Software Architects & Project Manager,
Industrial Software Applications Unit

Get out of (technical) debt
Research shows that the success of companies is increasing-
ly determined by software. One of the most successful retailers
(Amazon) is therefore not one of the most successful software
companies by chance, but has thus created the basis for success.
Particularly in the industrial environment, increasing demand has
arisen in the area of software development in the course of digi-
talization over the last few decades. Many companies have there-
fore established their own software development teams. Initially,
however, these teams often consisted purely of domain experts
without in-depth software development expertise. As software
development increasingly emerged as a core topic, the need for
software development as an independent discipline suddenly was
recognized and the teams were expanded to include software en-
gineers. The long development history, heterogeneous teams and
a corresponding developer turnover lead to heterogeneity in terms
of development methodology, technologies used and code quality.
If this heterogeneity is not countered by ongoing consolidation,
the cost of maintaining the software increases enormously over
the years. In addition, changes are increasingly difficult and the in-
tegration of new functionality is only possible with great effort and
risk. In the worst case, technical debt can be a result in “technical
bankruptcy” (see Figure 4).

Targeted modernization can greatly reduce the cost and risk of
maintenance and enable a faster response to future requirements.
An incremental approach means that the adjustments can be con-
tinuously transferred to productive operation and it will be ensured
that the system always meets the requirements. At the same time,
the effort required for modernization in relation to a new develop-
ment can be estimated relatively easily and accurately. Another
aspect of technical applications is that the requirements in terms
of model sizes have grown considerably over the years, so that the
term for calculations and the memory requirements are no longer
practicable with the current implementation of the software. In the
course of a modernization, such bottlenecks can be identified and
eliminated by an adequate software implementation exploiting the
parallelization potential of modern hardware architectures.

The ideal approach depends on the problem
The basis for a technically and economically successful modern-
ization of legacy software is a well-considered overall strategy. It
is important to approach the subject with as little bias as possible
and, in addition to modernization and refurbishment, to consider
and evaluate radical approaches such as completely new develop-
ment or the use of standard software. When considering whether
to reengineer existing software or to project a new development
instead, the former alternative is often preferable because reverse
engineering right down to the requirements can be enormously
time-consuming (see Figure 5). Many times, almost no documenta-
tion is available and the know-how is only manifested in the source
code. Due to the substantially lower costs, risks and lead times,
in many cases one will therefore opt for a specific modernization,
where the necessary re-engineering measures (re-code, re-design,
re-specify, re-think) are specifically identified for the different parts
of the system. When selecting a respective measure, it must be
considered whether the resulting benefit justifies the effort.

During modernization, parts with a high and low need for change
should be identified and strategically treated differently. For stable
parts with a low need for change, someone should always critically
question whether the effort and risk justify the potentially low ben-
efit. Anti-corruption layers offer the possibility of a step-by-step
migration from the legacy to the new system, with a stable produc-
tion system available at all times and further modernization can be
decided as required. An anti-corruption layer isolates parts from an
overall system and ensures compatibility between differently evo-
lutionary developed parts (legacy application with new code parts,
new application with legacy code parts).

An important strategy in the course of modernization is continu-
ous reduction of dependencies and improvement through mod-
ularization. The goal is loosely coupled components with clearly
defined interfaces and, if possible, standardized data formats and
protocols. In the case of highly efficient and specialized imple-
mentations in Fortran/C/C++, this enables easy integration into
platforms such as Python, .NET and Java in different application

Incremental re-engineering for sustainable software development

For long-lasting software systems, maintenance costs far exceed initial development costs. Escape the cost
trap through timely proactive modernization measures. An evolutionary approach guarantees predictable
costs, continuous releases and immediate customer benefits with manageable risk.

Software Reengineering

19

scenarios. A significant potential for improvement in the course of
incremental modernization is offered by the continuous expansion
of test automation. On the one hand, this documents the behavior
of the current system, and on the other hand, the tests represent

a “safety net” to automatically detect unintended side effects and
errors in the course of changes.

In the course of the concrete implementation of changes and ex-
tensions, there are numerous opportunities to profit from the de-
velopment of modern programming languages and libraries and
with that making the software more maintenance-friendly, more
robust and better performing. Particularly with regard to the per-
formance there were many improvements (parallelization, etc.) in
the last years from which one profits immediately. In addition, parts
of the in-house development can often be replaced because this
corresponding functionality is directly supported in the meantime
or corresponding open source alternatives are available. Technical-
ly demanding tasks with complex calculations can be solved faster
(strong scaling) or larger problems can be solved (weak scaling).

In addition to the aforementioned modernization at product levels,
the entire software development process should be analyzed and,
if necessary, improved or modernized, too. In recent years, studies
have clearly shown that in particular the rapid changeability (incl.
rollout) of software is a good indicator - not only for the perfor-
mance of software development, but due to the increasing impor-
tance of software usually even for the overall economic success of
a company. RISC Software GmbH has been a development partner
in large industrial software systems for many years and therefore
also supports and pushes the modernization of the software devel-
opment process at its partner companies.

Benefit from the potential of modern C++
The development of many large software systems started in
the 90s. At that time, there were fewer programming languages
compared to today, OpenSource was still hardly an issue and the
number of available libraries was manageable. C++ was the pro-
gramming language of choice for demanding modern (industrial)
applications. At that time, the first C++ standard was still a work
in progress and existing implementations were fragmented. Stan-
dard functionality such as containers were developed individually
according to different design philosophies, because modern alter-
natives such as STL were not known or widespread by then.

While numerous new, modern programming languages estab-
lished themselves in the 2000s, the development of C++ seemed
to stagnate. After the release of C++ 98 the work on the follow-up
version did begin - but completion was delayed until 2011. To
prevent another long period of stagnation, the C++ committee
changed its release process and delivers a new standard every
three years. The response to new C++ versions is extremely pos-
itive - more and more companies are participating in the develop-
ment of this powerful language. RISC Software GmbH is represent-
ed on the committee by Michael Hava via the ASI (https://www.
austrian-standards.at/).

The C++ committee has succeeded in improving readability, ro-
bustness and performance in wide areas without breaking any
existing code. Applications therefore benefit immediately from
the improvements without a lengthy/expensive rewrite and can

be incrementally “ported” to modern C++. While the existing code
still works, it offers the possibility to incrementally improve source
code locally. Below are some examples to show what is possible in
the context of local improvements in terms of compactness, ex-
pressiveness, robustness and efficiency.

Software Reengineering

Figure 4: Premature end of life of software due to technical debt Figure 5: Categorization of re-engineering measures

20

Software Reengineering

 We have already achieved a lot
for our customers
RISC Software GmbH has many years of experience in the development of native software
systems in technical applications. These are often very complex and have high require-
ments in terms of robustness, reliability and determinism of the results or time. Its cus-
tomers include Airbus, WFL, DS-Automotion and numerous others, with whom it often has
long-standing development partnerships. The range of services extends from the develop-
ment of new systems and the re-engineering of existing systems to consulting and training.

20

Figure 6: Gradual migration from the legacy to the new application with the help of the Anti-Corruption Layer

21

Figure 7: Software library VML (Virtual Modeling Library)

Figure 9: Combustion engine simulation for the calculation
of elastohydrodynamic pressure.

Figure 8: Structural optimization system Lagrange in the
Airbus Defence and Space division

Software Reengineering

Development of the software library VML (Virtual
Modeling Library)
The VML (https://virtual-modeling.at) is a software library from
RISC Software GmbH that implements new algorithms for the ex-
act geometric modeling of solids. It supports operations similar to
Constructive Solid Geometry (CSG) and the envelope volume cal-
culation. The VML offers good scalability in terms of the number
of operations performed during modeling. The library is best suit-
ed for industrial applications that have combined requirements for
geometric accuracy, speed and scalability. To ensure high efficiency,
the VML is implemented in C++ and uses parallel algorithms that ex-
ploit the potential of modern hardware architectures such as multi-
core central processing units (CPUs) and graphic processing units
(GPUs). The VML is used, for example, in the product CrashGuard
Studio from the company WLF Millturn Technologies (https://www.
wfl.at). CrashGuard Studio is a 3D simulation software for multifunc-
tional CNC turning, drilling and milling centers, which enables ma-
chines with their complex kinematics and extensive machining and
expansion options to be simulated very realistically.

Re-engineering of the Lagrange structural
optimization system
Airbus Defence and Space uses the multidisciplinary structural op-
timization system Lagrange in the field of aircraft structure engi-
neering, starting its development in the early 1980s in the Fortran77
programming language. RISC Software GmbH started the re-en-
gineering of this software system in the year 2005. The first step
was to replace a critical calculation component in order to remove
its limitation with respect to the maximum problem sizes. The new
development was done in C++ and was integrated into the old sys-
tem. In a next step the entire system was ported from the old For-
tran 77 language standard to the newer Fortran 2003/2008. Since
the overall system had limitations in many places with regard to the
maximum problem sizes and the expandability was limited due to
the design, an incremental re-engineering of the overall system in
Fortran 2003/2008 was done. The new system should also be able
to be used in production operation at any time and deliver the same
results as the old system.

Consulting for optimization measures of a lubricant
film calculation routine
The FH Wels developed a routine for the calculation of the elasto-
hydrodynamic pressure, which occurs in the oil film between piston
and cylinder in an internal combustion engine, within the framework
of a simulation system. RISC Software GmbH conducted a consult-
ing for optimization measures of this calculation routine implement-
ed in C++. The aim was to make the best possible use of the potential
offered by modern hardware architectures. Through an analysis of
the system, the critical points were identified and suitable optimiza-
tion measures were developed. Finally, the approach and the results
were communicated in a workshop.

22

Welcome Change
– DI (FH) Andreas Lettner
Head of Domain-specific Applications Unit and Head of Coaches

The new Scrum Guide

Welcome Change - an essential principle in agile development, which is supported in its importance in the
Scrum framework by the three pillars of transparency, inspection and adaptation. And just as change is some-
thing we encounter every day during product development, it is also necessary to allow and live change in the
development of agile practices and frameworks. On November 18, 2020, the time had come: the new Scrum
Guide was published. Here you find the fundamental changes at first sight.
First of all, what hasn‘t changed? Scrum is still Scrum - a lightweight framework that helps teams solve com-
plex problems and is designed to deliver value to customers. Customer-centric, nevertheless a focused view
on the team and its members.

More freedom leads to more
individuality
The Scrum framework has never been par-
ticularly prescriptive in its practices in order
to get a team to work and grow optimally.
The new Scrum Guide goes a step further
and becomes less “prescriptive” in many
parts and reduces to the essentials. For
example, in the Daily Scrum, the previously
defined questions have been eliminated.

A stronger team
In the future, the Scrum Team will only be
one team. This may sound strange at first
glance, but with the previous designation
of the “Development Team” in the Scrum
Guide, there was a danger that the devel-

opers would form themselves as a “sub-
team” and that the positive synergies in the
entire Scrum Team would be missing. In the

new Scrum Guide the term “Development
Team” is replaced by “Developer.” There is
now only one team - the Scrum Team!

No more hats - only
responsibilities
Previously, Scrum Master, Product Owner
and the Development Team were described
in terms of roles. The new Scrum Guide
completely dispenses with the concept

of roles and now uniformly introduces the
communication of accountabilities. This
may also lead to Scrum teams growing
closer together in the future and being able
to move better as a team.

The Scrum Master becomes a
“real” leader
At first glance, a small change was made

to the Scrum Master: the “Servant Leader”

became the “True Leader,” who continues
to support the team and the organization.
This change must first convince us, since

the concept of the “Servant Leader” previ-
ously represented a clear image and demar-
cation from classic management, which
could be weakened by this.

Self-organization vs.
self-management
The “self-organizing” Scrum team becomes
the “self-managing” Scrum team. This em-
phasizes the high value of the autonomy of
the entire team. While in the Scrum Guide
from 2017 the Development Team was still
self-organizing, it is now the Scrum Team
that decides together.

The way is the goal
The product goal is now the basis for these

joint decisions. The product goal is intend-
ed to create a common picture of the prod-
uct and to present the possible paths more
clearly.

Three obligations
The 2017 Scrum Guide already mentioned
the sprint goal and the definition of Done,
yet these were not particularly strongly
anchored. Simultaneously with the intro-
duction of the product goals, these three
were now assigned to the artifacts as com-
mitments:
• Product backlog receives the

product target
• Sprint Backlog receives the sprint target
• Increment receives the definition

of Done

Previously, the sprint goal was communi-
cated as part of sprint planning. What is
new here is the joint definition of the sprint
goal by the Scrum team. Through the insti-
tutionalization of a preceding, additional
question in Sprint Planning, the following
topics have arisen:
- Why is this sprint valuable?
- What can be implemented in the sprint?
- How is the chosen work implemented?

Agile Softwareentwicklung

23

Sprint
1-4 weeks

Daily Scrum

Product Backlog
Refinement

Sprint
Review

Sprint
Retrospective

Sprint
Backlog

Product Backlog
Sprint Planning

Vision

Product
IncrementProduct Improvement

Process
Improvement

scrum
Sprint Cycle

Sprint
1-4 weeks

Daily Scrum

Product Backlog
Refinement

Sprint
Review

Sprint
Retrospective

Sprint
Backlog

Product Backlog
Sprint Planning

Vision

Product
IncrementProduct Improvement

Process
Improvement

 About Scrum
Scrum is an agile approach to project management devel-
oped by Ken Schwaber and Jeff Sutherland and frequently
used in software development. The approach is defined in
the so-called Scrum Guide and is developed independently
of companies and manufacturers. An updated version of the
Scrum Guide was published on November 18, 2020.

23

 Conclusion
The changes in the Scrum Guide 2020 can simply be de-
scribed with one word: exciting. We are curious to incorpo-
rate the new topics into our everyday project work and to
experiment with them. We are confident that many of the
changes mentioned here will influence the development of
our way of working in a positive way. We would like to invite
our clients to take this step of development together with
us.

You can download the poster by
scanning this QR code

24

“OK Google: What is Natural
Language Processing?”
– Sandra Wartner, MSc
Data Scientist in the Logistics Informatics Unit

The flood of data generated by us humans is growing day by day.
For the year 2020 alone, growth statistics showed that 1.7MB of
data is generated per person every second. We send photos, store
documents in the cloud, stream music or videos, communicate via
video conferencing tools, and use many more conveniences that
the Internet offers us. In the last two years alone, approximately
90 % of the world‘s data was generated - and the numbers con-
tinue to rise. The COVID pandemic, among other things, is also
contributing to a sharp rise in the growth rate due to the increased
need for online communication and home offices.

A considerably large amount of the existing data consists of text
data. We primarily generate these ourselves by writing emails,
product reviews, tweets, or text messages, for example. At the
same time, we can use the potential of the continuously growing
mountains of data to create the applications that increasingly sup-
port us in our everyday lives in the first place. We use translation
functions from one language to another (e.g., DeepL), programs
alert us to typos when composing texts and messages, digital
voice assistants such as Alexa, Cortana, Siri and co. support us in
a wide range of activities, and search engines offer search com-
pletion - all these services and functions are built on one essential
technology: Natural Language Processing (NLP).

Artificial Intelligence as an interface between
human and machine
Machine processing of natural language is not a new field of re-
search, however, due to the availability of higher computing
power, enormous amounts of data (Big Data) as well as modern

algorithms, recent years have brought a multitude of revolution-
ary achievements in the NLP environment: computers are able to
read, understand and speak. As an interdisciplinary field of linguis-
tics, computer science, and artificial intelligence (AI), NLP enables
communication between humans and machines in different forms
(written and spoken) and in a variety of languages.

If we want to ask the Google Assistant on our smartphone to have
a synthesized voice explain NLP to us, a simple “OK Google” and
the trailing question will suffice. Optimally, we will receive an an-
swer that satisfies us and provides exactly the information we were
looking for. While this task sounds relatively simple for execution
by a human, for a machine it means breaking down language into
its elementary components, understanding the question and con-
text, and having to solve sequentially different problems.

Natural Language Understanding (NLU) focuses on the extraction
of information from text and thus on the acquisition of text un-
derstanding with respect to a certain aspect. Syntax (grammatical
structure) and semantics (meaning of words) play an important
role. Examples of this are:
• grammatical analysis (e.g., Part-of-Speech (POS) Tagging),
• recognize people, places or other keywords in texts (e. g.,

Named Entity Recognition (NER)),
• sentiment and opinion analysis and
• classification of text into predefined categories.

Natural Language Generation (NLG) focuses on the generation of
natural language and is used, among other things, for the automat-
ed creation, summarization or translation of texts.

How machines read, decode and understand human language

Not every language is created equal - while humans have created their own communication channels over
thousands of years, millions of zeros and ones serve as machine code, or machine language, for computers to
understand and execute commands. Natural language processing, or NLP, enables machines to read, decode
and understand human language. Speech assistants, spelling correctors, email spam filters - NLP as a technol-
ogy is omnipresent and already hides behind many processes and software applications deeply embedded in
our everyday lives. The often hidden potential in many mountains of data is far from exhausted.

Data Science and Prescriptive Analytics

25

Terrible service - they
don't even deserve one

single star!!!

Can do better

I love this product!

I am impressed by
the quality and

the fast shipment.

Natural Language Processing (NLP)

NLU

STT
Speech-to-Text

TTS
Text-to-Speech

NLG
Natural

Language
Generation

Text

Natural
Language

Understanding

Since NLU and NLG work exclusively with written language, a com-
ponent for speech recognition (Speech-to-Text, STT for short) and
speech synthesis (Text-to-Speech, TTS for short) is often required,
which then act as an interface between the NLP system and the
real world.

For the “OK Google” example, this means that the query is con-
verted from spoken language to written language using STT. The
query, which has been recognized by NLU, can be responded to, for
example, by collecting and evaluating relevant search results. The
knowledge generated in this process can mostly (depending on the
type of result) be played back acoustically using NLG and TTS or
the best hits can be displayed on the terminal.

NLP is considered one of the most complicated problems in com-
puter science. Natural language in itself has no identifiable struc-
ture (often referred to as unstructured data) and is a complex sys-
tem of strung together, partially interdependent characters and
therefore not easy to understand. German, English, Russian, Jap-
anese, Arabic - each language has its own complex syntax and pe-
culiarities. In addition, there are further complications, as language
often does not work in a linear way, but makes use of different
stylistic devices, idioms and information between the lines. Recog-
nizing sarcasm is not always possible even for a human. Ambigu-
ities of single words have to be resolved by a context analysis, e.g.,

to associate the word “bank” with a seat or a financial institution.
Mumbling, stuttering, speaking in dialect and background noises
make it difficult for the voice assistant to evaluate the information
and can lead to an incorrect answer. Algorithms have to face these
and several other challenges in order to meet their requirements.

Older systems relied on rule-based or purely statistical approach-
es, whereas the breakthrough only came with machine learning
(especially deep learning) and the availability of large amounts of
data. Machine Learning models try to infer general patterns from
a set of examples (How do people use language? Which grammar
rules are applied?) and apply them to decide for an individual case
- similar to a child learning human language. The more examples
the system is provided with and the better they reflect reality or
the future application scenario, the higher the hit rate for new, un-
known tasks the system is supposed to solve. Currently, the most
promising models or state-of-the-art results for tasks from the NLP
domain are obtained with Deep Learning algorithms, which allow
more complex modeling than conventional Machine Learning mod-
els. Deep Learning was inspired by the way a human brain works
and employs multi-layered neural networks. The highly connected

structures enable “deep learning,”which is essential especially for
the complex construct of language.

Data Science and Prescriptive Analytics

Figure 10: Sentiment analysis

Figure 11: NLP-relevant components

26

Use Case: Automated evaluation of
customer feedback

You are a marketing representative and
would like to get an overview of the mood

and reactions regarding to your new
advertising campaign on social media.

Use Case: Social media analysis

You are an employee of the federal office
for the protection of the constitution and
want to discover and monitor extremist,

radical and violence-glorifying social
media profiles and posts.

Use Case: Support in clinical
documentation and organization

You work as a specialist and would like
to summarize essential information from

several, extensive medical histories of
individual patients in order to obtain a

holistic view of the disease history.

Use Case: Customer support

You are an online mail order company
and want to reduce customer service

response times by automating the
processing and answering of customer

inquiries.

Use Case: Automated extraction
of information from documents such as

invoices or delivery bills

You are the manager of the receiving
department and want to control the

details of the deliveries instead of
entering them manually.

Use Case: Automated
document-classification

You are working in controlling and would
like to receive only those documents

(or document types) for which you are
responsible.

Data Science and Prescriptive Analytics

Text analytics und use-Cases in a company
In order to exploit the often untapped potential in corporate data
and solve business problems, existing (raw) data must be exam-
ined and knowledge derived from it, quantified and visualized.
Text analytics can be used to map this process in order to process
large volumes of unstructured text data and gain insights. Only if
a uniform understanding of all stakeholders can be created for the
results and the step of seamlessly integrating solutions into exist-
ing workflows and systems can be mastered, can further decisions
for action be derived from this and thus the success factor for the
company be increased in the long term.

More and more companies from different industries rely on NLP
solutions to better manage and use the accumulated, different
text forms in a variety of areas. Especially when there are recurring
tasks to be done, automating these tasks can be useful.
In the following, exemplary use cases are listed to illustrate the
broad applicability of NLP solutions.

Technology

Sports

Food

Figure 12: Document classification

27

Softwareentwicklung

 Conclusion
Progress in the NLP field is unstoppable and is continuously
providing new and better solutions to a wide range of prob-
lems. The precision of the models developed and their avail-
ability to the masses continue to increase and more and more
developments are making the leap from research to produc-
tion. In any case, it remains exciting to see what further break-
throughs the coming years will bring - one thing is clear, they
will come. RISC Software GmbH is happy to support you in the
submission and implementation of (research) projects in the
field of Natural Language Processing.

27

28

C++20 Concepts
– Michael Hava MSc
Senior Software Architect in the Industrial Software Applications Unit
and member of C++ Standard Committee

A short historical overview about the development of the
programming language and the implementation of “Templates” and “Concepts.”

The famous Bjarne Stroustrup, the inventor of the programming language C++, which is still widely used to-
day, originally started developing C with Classes in 1979 at Bell Labs. His goal was a programming language
that would combine the speed of C with the organizational capabilities (=object orientation) of Simula which
were and still are necessary for large projects.

Due to the great success, Stroustrup began barely ten years lat-
er (1987) to work on an extension of the language, which in the
meantime had been renamed C++: Templates - this generic con-
cept was intended to enable the implementation of generic classes
and functions, and thus incidentally to largely replace the pre-pro-
cessor macros taken over from C. The development of these Tem-
plates was based essentially on three Design goals:
• full generality: templates should not be targeted at individual

use cases, but should be designed for broad use.
• zero overhead: Code generated by templates should be indistin-

guishable from handwritten code (in terms of efficiency, perfor-
mance, etc.) after compilation.

• good interfaces (“constraints”): Similarly as C++ had improved
the type security in relation to C, generic interfaces are to repre-
sent an improvement, too.

Result of the work: It seems to be impossible to achieve all three
goals at the same time at the current state of research. Since the
first two goals are essential for the acceptance of templates, while
constraints “only” improve usability, templates are added to C++
without them. Constraints are to be added as soon as possible.

Algorithms are defined on algebraic structures
In the year 1994, C++ (now on its way to becoming an ISO stan-
dard) is extended by the Standard Template Library (STL), a library
for generic algorithms and container classes. It is the result of Alex-
ander Stepanov‘s nearly 20 years of research on generic program-
ming and is fundamentally different from contemporary object-ori-
ented approaches.

At the beginning of this research his realization stood firm in 1976:
algorithms are defined on algebraic structures. Based on the math-
ematical model of algebraic structures, he developed Concepts [1],
the central pillar of generic programming. Analogous to algebraic
structures, concepts describe the required operations and under-
lying mathematical axioms, which an algorithm places on the data
to be processed. The goal of generic programming is to define al-
gorithms based only on the minimum necessary concepts and thus
make them usable for a variety of concrete types.

After experiments in several programming languages (Scheme,
Ada, ...) C++ is the first, which is expressive enough for generic
programming Alexander Stepanov thought - even if the missing
support for concepts makes complex emulations necessary. With
the integration of the STL into the standard library, the idea of
Concepts is also taken over in C++. From a programming language
perspective, concepts are a formal representation of constraints.
The focus for the completion of templates shifts subsequently to
Concepts. Nevertheless, the first C++ ISO standard 1998 (C++98)
appears without extensions of the template system, Concepts
must be emulated further.

Software Reengineering

29

No completion of Templates in sight
In the first years after C++98, the standard committee focused on
bug fixing and stabilization. Therefore, the development of Con-
cepts did not pick up again until 2003 as part of the work on the
next C++ standard (C++0x). Bjarne Stroustrup and Gabriel Dos Reis
published a series of papers on a possible Concepts design. A re-
search group at Indiana University also published their results in
2005. The two contrasting approaches gave rise to the joint C++0x
Concepts design in 2006, which was incorporated into the working
draft of the C++ standard in 2008.

In the months that followed, however, some problems with the
design became apparent. Since the completion of the new stan-
dard was already postponed several times and it can be assumed
that the bug fixing will lead to further postponements, the stan-
dard committee removed Concepts from the working draft again
in 2009. C++11 thus appeared 13 years after the first standard still
without the completion of templates.

First Concepts-based library
While working on C++14, Bjarne Stroustrup, Gabriel Dos Reis and
Andrew Sutton designed a new draft - Concepts Lite - based on the
findings of C++0x Concepts in 2013. The key difference to the old
approach: This time they focus on a “minimal feature” [2], which
can be extended later if needed. The result of their work is pub-
lished in 2015 as a Technical Specification (TS) [3].

In summer 2017, four months after the completion of C++17, con-
cepts based on the TS are integrated into the working draft for
C++20. Together with the language extension, a library extension
of pre-built basic Concepts is provided. This will be followed in 2018
by Ranges, the first Concepts-based library - it contains, among
other things, the STL algorithms verified with Concepts. C++20 will
be adopted in February 2020 and unanimously approved in Sep-
tember 2020.

[1] The implicit counterpart of generic programming to the explicit interfaces from object-oriented programming.

[2] For example, language resources on axioms and definition checks are missing, among other things.

[3] Independent ISO document that contains possible extensions for a standard. The goal is to get user feedback and to include a version of the content in an

ISO standard.

Software Reengineering

30

Making better decisions
thanks to Prescriptive Analytics
– DI Dr. Michael Bögl
Mathematical Optimization Specialist, Logistics Informatics Unit

Step by step from descriptive to prescriptive analytics

Digitization and topics such as Industry 4.0 and the Internet of Things have led to many companies collect-
ing their data on a large scale in a structured manner. This collected data is then utilized in different ways. If
correlations are present in this data and a prognosis model can be derived, then this model can also be taken
into account in planning and control. This guarantees significant added value, such as a reduction in costs and
time, a more efficient use of resources, etc. How something like this looks concretely, what is assumed and
which possibilities arise, are shown in this article.

From data collection to prescriptive analytics
Digitization in recent years has created the basis for companies to
continuously collect and store data on their processes and oper-
ations in a structured manner. To create added value, companies
must make the best possible use of this data. Forecasting models
are created from the collected data in order to be able to estimate
future developments, events or conditions. These can be, for ex-
ample, models for sales forecasts, wear and tear of tools in produc-
tion, customer requirements, stock levels, traffic-dependent travel
times, etc.

By combining the forecast models with optimization models (for
calculating optimal decisions), different scenarios can automati-
cally be calculated and compared. This provides those responsible
with a solid basis for making optimal decisions. The transparent
basis for decision-making guarantees that the decisions made are
always comprehensible and can be argued.
Depending on how the data is used, we speak of different areas of
application, or phases or stages, with the benefits increasing the
higher the stage (see also Figure 13 and Table 1).

If the collected data is used to evaluate what has happened, this is
referred to descriptive analytics. Relationships in the data are not
yet recognized. One result could be that one recognizes that the
product quality fluctuates both in the course of the day and sea-
sonally.

1. Diagnostic analytics identifies the causes of interrelation-
ships. The prerequisite for implementing targeted improve-
ment measures is to know the causes. For the example from
point 1, this means: Product quality fluctuates seasonally
and over the course of the day because quality drops from a
temperature of 30 °C; or after the first orders following a tool
change, the machines have to be recalibrated (this may extend
the non-productive time, but leads to higher quality).

2. Once all the relevant interrelationships and influencing vari-
ables have been determined, models can be created that de-
pict these interrelationships. These models can be used to
make statements about future behavior. This is referred to
predictive analytics. For example, future sales, rejects in pro-
duction or the quality of the product can be predicted.

3. In prescriptive analytics, future events will be forecasted at
first, various decision options will be simulated and evaluated
if necessary and the best alternative course of action is subse-
quently calculated. For this calculation, companies can draw
on existing know-how and planning algorithms. If necessary,
the planning algorithms can also be extended or additional
methods integrated.

The application areas described are shown in Figure 13 according
to their focus and utility. While descriptive and diagnostic analytics
are directed toward the past and can create a deeper and useful
understanding of current data and relationships between them,
predictive and prescriptive analytics are oriented toward the fu-
ture. The identified relationships from the recorded data are used
to create benefits for the future.

Prescriptive analytics in decision support
Figure 14 shows the main components of a prescriptive system.
The basis is formed by the collected data from different data sourc-
es. The necessary models (forecast model and decision model) are
created from the data and the available expert knowledge. Based
on these models, different scenarios can be evaluated and the de-
cision makers can make the best decision.
A decision support system is shown, i.e., the system evaluates dif-
ferent scenarios, but ultimately the decision is made by the person
in charge. If the decision is made by the system, then we speak of
decision automation.

Data Science and Prescriptive Analytics

31

Which methods are available?
Methods from different disciplines are available for the implemen-
tation of prescriptive models. The concept of prescriptive analytics
does not prescribe any particular methods. Predominantly, meth-
ods from artificial intelligence are used. The focus is on machine
learning and data mining, statistical analysis methods, mathe-
matical programming and simulation. The selection of suitable
methods depends very much on the available data, the framework

conditions and, above all, the objectives (white-box vs. black-box
models, integration of expert knowledge, etc.). The available meth-
od portfolio is that extensive that suitable methods can be used for
many use cases.

Questions and use cases
In addition to the examples given above, there are many different
applications for prescriptive analytics, just like the following ones:

Benefit

Focus
Past Present Future

descriptive analytics...

diagnostic analytics... predictive analytics...

prescriptive analytics...

Data

Comprehension

Decision

Table 1: Application layers

Figure 13: Fields of application

Data Science and Prescriptive Analytics

Grade Description Application layers Examples

1 Descriptive
Analytics Evaluation of the collected data and reporting

• Product quality varies over the course of the day as well as seasonally
• Truck driving time fluctuates over the course of the day and week
• More customer orders to be processed on Monday and Tuesday than on

the other days of the week

2 Diagnostic
Analytics Causes for correlations

• The product quality varies seasonally and during the day because the
quality decreases above a temperature of 30 °C

• Truck driving time varies due to higher traffic in the morning and
evening and possibly Monday and Friday

• Orders are higher because customers order more on weekends

3 Predictive
Analytics Models for future behavior

• The expected scrap in production
• The expected travel time on a certain route on a certain day at a

certain time
• The expected order quantities for the next weeks per weekday

4 Prescriptive
Analytics

Future decision options are simulated and the best
alternative action is chosen

• When should maintenance be performed on the production machines to
ensure that the product quality meets the given requirements

• When must the truck leave in order to reach all destinations on time?
• How many products must be kept in stock to avoid out-of-stock situ-

ations and how many resources are needed to process the orders as
quickly as possible

32

Digital twin for the development of
production machines

How exactly should the production
machine be designed so that operation is

as efficient as possible?

Price determination

How high should the price of a product
be so that it appeals to a broad group
of buyers and the contribution margin

remains high?

Healthcare management

What is the (optimal) placement,
diameter, duration, and intensity of

the beam during radiation therapy to
minimize damage to surrounding tissue?

Composition of the recipe

What should the formulation
(proportions, environmental conditions)

look like so that the product meets certain
criteria?

Integrated production and route planning

When should which orders be produced
so that customers can be supplied with

optimal transport?

Determination of the residual capacity

How many orders can still be
produced and when will these orders

be completed?

Decision

Prognosis

Data-...

rated...

1

2

n

Data sources Data Models Use

optimal...

k
k

Figure 14: Components of a prescriptive system

Data Science and Prescriptive Analytics

33

Softwareentwicklung

 The path to pre-
scriptive analytics
For companies that already have a large database, prescriptive
analytics offers the opportunity to generate additional value
from the data already available by incorporating the insights
gained from the data into planning. Companies that do not
have end-to-end data collection or are not using their data for
such tasks by now have the opportunity to incrementally in-
crease the value they derive from their data. The stages from
descriptive to prescriptive analytics build on each other aand
valuable insights can already be gained (together with the
business experts) in the diagnostic analytics. Then the next
steps can be planned in order to be able to successfully shape
the path towards prescriptive analytics.

33

34

Data Understanders: Leveraging
enterprise data through intelligent
Graph Databases
– DI Paul Heinzlreiter
Senior Data Engineer in the Logistics Informatics Unit

Use modern database technology to intuitively capture
and understand your data

The great strength of graph databases - databases that use graphs to connect and store networked infor-
mation in the form of nodes and edges - is the extensive mapping of relationships between data points. This
enables an intuitive mapping of many real-world scenarios, which have gained a lot of importance especially
during the last years. Examples include modeling relationships between people in social networks, making
purchase recommendations in e-commerce, or detecting fraudulent transactions in finance. In addition to
these application areas, graph databases are also useful in the fields of industrial manufacturing, traffic data
analysis or IT infrastructure monitoring for identifying causal relationships.

Figure 15: According to a survey on the
popularity of database categories (https://
db-engines.com/en/ranking_categories),
graph databases represent the fastest
growing category of database technologies
over the last few years. Graph databases
represent their data as sets of nodes and
edges, where nodes represent data objects
with attributes, while edges represent the
links between the objects.

Graph databases compared to
relational databases
Relational databases are excellently suited
for representing tabular structures, such
as those commonly used in the commer-
cial sector. By using the third normal form,
the data is stored in tables clearly separat-
ed according to the objects they describe,
whereby other objects with which they are
related are referenced via foreign keys. The
goal is, among other things, to avoid data
duplication and to enable linking through
flexible queries in the Structured Query
Language (SQL).

These applications are also characterized
by the fact that once a data model has been
designed, it usually remains constant over a
longer period of time. However, in problem
domains where one is primarily interested
in the links between data, the relational
data model has weak points. Since links
are mapped via foreign key relationships,
queries often have to be implemented as
multi-level joins, which can be very run-
time-intensive, especially for large tables.
In addition, many application domains con-
tain semi-structured data whose structure
changes over time. Such data is difficult to

Data Science and Prescriptive Analytics

35

Use case: Traceability of circuits in
complex systems

From traffic control systems to refineries
and factories: control algorithms perform

automated switching operations.
Graph databases can help make them

comprehensible to humans, detect errors
and increase the efficiency of such plants.

Use case: Monitoring and
optimization of IT assets

Parameters of servers and applications
can be collected automatically. Based

on this, graph databases can be used to
detect transitive dependencies between
services as well as overloads or critical

elements in IT infrastructures.

Use case: Medicine

Graph databases can show correlations
between patients‘ disease histories and
the efficacy of therapies. Likewise, drug

interactions can be identified.

Use case: Supply chain modeling

Complex supply chains can be mapped
and thus potential bottlenecks or

dependencies on individual suppliers can
be identified.

Use case: Pharmaceutical industry

Mapping the relationships between
biological and chemical data can

accelerate the development of new
pharamceuticals.

Use case: Root cause determination
for machine problems

Correlations between sensor values
and machine states are often only

suspected or unknown. A collection
and time-based linking of data in a
graph database can reveal hidden

correlations.

represent in the rigid data model of a rela-
tional database. In addition, the more flex-
ible data model of a graph database often
allows it to more directly represent the real-
ity being modeled, making both the design
of the data model and the queries applied
to it more intuitive. Furthermore, it is more
easily adaptable in the event of changes in
the application domain, since the graph can
be extended without drastic changes in the
data model.

The path to a better data
understanding
Wherever relationships between data
points are the focus of interest, graph data-
bases provide a solid basis for further anal-
ysis. They allow a more direct and flexible
mapping of the problem domain than rela-
tional databases.

Furthermore, they show the way from the
collected data to answering the category of

questions about the cause of potential or
current problems:
Why did this part fail?

• Why are there bottlenecks and price
increases in the procurement of parts
for production?

• Why does a therapy work better for
a patient?

• Why is this server application
overloaded?

35

Data Science and Prescriptive Analytics

36

facebook.com/RISC.Software

twitter.com/RISC_Software

linkedin.com/company/risc-software-gmbh

Imprint
Publisher and
Media owner:

RISC Software GmbH,
Softwarepark 32a, 4232 Hagenberg,

+43 7236 93028, office@risc-software.at
Responsible for content: DI Wolfgang Freiseisen

Chef editor: Mag. Cornelia Staub
Design and graphic layout: Melanie Laßlberger, BSc

Version: 1.0 |01.08.2022
Image credits: RISC Software GmbH, iStock.com

if not otherwise indicated, Adobe Stock (16), Airbus Defence and
Space (21), Bjarne Stroustrup (28), DB-Engines.com (34),

fontawsome.com (26, 32, 35), freepik.com (back side),
Shutterstock (Coverfoto, 7, 8, 9, 27)

xing.com/pages/riscsoftwaregmbh

